Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add filters

Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.05.08.539897

ABSTRACT

It has been three years since SARS-CoV-2 emerged and the world plunged into a \"once in a century\" pandemic. Since then, multiple waves of infection have swept through the human population, led by variants that were able to evade any acquired immunity. The co-evolution of SARS-CoV-2 variants with human immunity provides an excellent opportunity to study the interaction between viral pathogens and their human hosts. The heavily N-glycosylated spike-protein of SARS-CoV-2 plays a pivotal role in initiating infection and is the target for host immune response, both of which are impacted by host-installed N-glycans. We compared the N-glycan landscape of recombinantly expressed, stabilized, soluble spike-protein trimers representing seven of the most prominent SARS-CoV-2 variants and found that N-glycan processing is conserved at most sites. However, in multiple variants, processing of N-glycans from high mannose- to complex-type is reduced at sites N165, N343 and N616, implicated in spike-protein function.

2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.04.26.538488

ABSTRACT

Developing broad coronavirus vaccines requires identifying and understanding the molecular basis of broadly neutralizing antibody (bnAb) spike sites. In our previous work, we identified sarbecovirus spike RBD group 1 and 2 bnAbs. We have now shown that many of these bnAbs can still neutralize highly mutated SARS-CoV-2 variants, including the XBB.1.5. Structural studies revealed that group 1 bnAbs use recurrent germline-encoded CDRH3 features to interact with a conserved RBD region that overlaps with class 4 bnAb site. Group 2 bnAbs recognize a less well-characterized "site V" on the RBD and destabilize spike trimer. The site V has remained largely unchanged in SARS-CoV-2 variants and is highly conserved across diverse sarbecoviruses, making it a promising target for broad coronavirus vaccine development. Our findings suggest that targeted vaccine strategies may be needed to induce effective B cell responses to escape resistant subdominant spike RBD bnAb sites.

3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.11.11.516125

ABSTRACT

SARS-CoV-2 mutational variants evade humoral immune responses elicited by vaccines and current monoclonal antibody (mAb) therapies. Novel antibody-based treatments will thus need to exhibit broad neutralization against different variants. Bispecific antibodies (bsAbs) combine the specificities of two distinct antibodies into one antibody taking advantage of the avidity, synergy and cooperativity provided by targeting two different epitopes. Here we used controlled Fab-arm exchange (cFAE), a versatile and straightforward method, to produce bsAbs that neutralize SARS-CoV and SARS-CoV-2 variants, including Omicron and its subvariants, by combining potent SARS-CoV-2-specific neutralizing antibodies with broader but less potent antibodies that also neutralize SARS-CoV. We demonstrate that the parental IgG's rely on avidity for their neutralizing activity by comparing their potency to bsAbs containing one irrelevant "dead" Fab arm. We used single particle mass photometry to measure formation of antibody:spike complexes, and determined that bsAbs increase binding stoichiometry compared to corresponding cocktails, without a loss of binding affinity. The heterogeneous binding pattern of bsAbs to spike (S), observed by negative-stain electron microscopy and mass photometry provided evidence for both intra- and inter-spike crosslinking. This study highlights the utility of cross-neutralizing antibodies for designing bivalent or multivalent agents to provide a robust activity against circulating variants, as well as future SARS-like coronaviruses.


Subject(s)
Severe Acute Respiratory Syndrome
4.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.10.31.514592

ABSTRACT

The rapid evolution of SARS-CoV-2 Omicron variants has emphasized the need to identify antibodies with broad neutralizing capabilities to inform future monoclonal therapies and vaccination strategies. Herein, we identify S728-1157, a broadly neutralizing antibody (bnAb) targeting the receptor-binding site (RBS) and derived from an individual previously infected with SARS-CoV-2 prior to the spread of variants of concern (VOCs). S728-1157 demonstrates broad cross-neutralization of all dominant variants including D614G, Beta, Delta, Kappa, Mu, and Omicron (BA.1/BA.2/BA.2.75/BA.4/BA.5/BL.1). Furthermore, it protected hamsters against in vivo challenges with wildtype, Delta, and BA.1 viruses. Structural analysis reveals that this antibody targets a class 1 epitope via multiple hydrophobic and polar interactions with its CDR-H3, in addition to common class 1 motifs in CDR-H1/CDR-H2. Importantly, this epitope is more readily accessible in the open and prefusion state, or in the hexaproline (6P)-stabilized spike constructs, as compared to diproline (2P) constructs. Overall, S728-1157 demonstrates broad therapeutic potential, and may inform target-driven vaccine design against future SARS-CoV-2 variants.

5.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.10.14.512216

ABSTRACT

The worldwide pandemic caused by SARS-CoV-2 has remained a human medical threat due to the continued evolution of multiple variants that acquire resistance to vaccines and prior infection. Therefore, it is imperative to discover monoclonal antibodies (mAbs) that neutralize a broad range of SARS-CoV-2 variants for therapeutic and prophylactic use. A stabilized autologous SARS-CoV-2 spike glycoprotein was used to enrich antigen-specific B cells from an individual with a primary Gamma variant infection. Five mAbs selected from those B cells showed considerable neutralizing potency against multiple variants of concern, with COVA309-35 being the most potent against the autologous virus, as well as against Omicron BA.1 and BA.2. When combining the COVA309 mAbs as cocktails or bispecific antibody formats, the breadth and potency was significantly improved against all tested variants. In addition, the mechanism of cross-neutralization of the COVA309 mAbs was elucidated by structural analysis. Altogether these data indicate that a Gamma-infected individual can develop broadly neutralizing antibodies.

6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.01.470767

ABSTRACT

Delineating the origins and properties of antibodies elicited by SARS-CoV-2 infection and vaccination is critical for understanding their benefits and potential shortcomings. Therefore, we investigated the SARS-CoV-2 spike (S)-reactive B cell repertoire in unexposed individuals by flow cytometry and single-cell sequencing. We found that ~82% of SARS-CoV-2 S-reactive B cells show a naive phenotype, which represents an unusually high fraction of total human naive B cells (~0.1%). Approximately 10% of these naive S-reactive B cells shared an IGHV1-69/IGKV3-11 B cell receptor pairing, an enrichment of 18-fold compared to the complete naive repertoire. A proportion of memory B cells, comprising switched (~0.05%) and unswitched B cells (~0.04%), was also reactive with S and some of these cells were reactive with ADAMTS13, which is associated with thrombotic thrombocytopenia. Following SARS-CoV-2 infection, we report an average 37-fold enrichment of IGHV1-69/IGKV3-11 B cell receptor pairing in the S-reactive memory B cells compared to the unselected memory repertoire. This class of B cells targets a previously undefined non-neutralizing epitope on the S2 subunit that becomes exposed on S proteins used in approved vaccines when they transition away from the native pre-fusion state because of instability. These findings can help guide the improvement of SARS-CoV-2 vaccines.


Subject(s)
COVID-19 , Purpura, Thrombotic Thrombocytopenic
7.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.09.28.462234

ABSTRACT

As the coronavirus disease 2019 (COVID-19) pandemic continues, there is a strong need for highly potent monoclonal antibodies (mAbs) that are resistant against severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) variants of concern (VoCs). To date there have been four major variants (Alpha, Beta, Gamma, Delta) that have tested the efficacy of the vaccines and have led to some breakthrough infections amongst vaccinated populations. Here, we evaluate the potency of a previously described mAb J08 against these variants using cell-based assays and delve into the molecular details of the binding interaction using cryo-EM. We show that mAb J08 is unique because it has low nanomolar affinity against the VoCs, binds high on the receptor binding domain (RBD) ridge and is therefore unaffected by most mutations, and can bind in the RBD-up and -down conformations. These findings further validate the phase II/III human clinical trial underway using mAb J08 as a monoclonal therapy. One sentence summaryMonoclonal antibody J08 can potently neutralize wild-type SARS-CoV-2 and variants of concern by binding to the ridge of the receptor binding domain in up and down conformations and thereby avoid the effects of current escape mutations.


Subject(s)
COVID-19 , Breakthrough Pain , Coronavirus Infections
8.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.07.05.451222

ABSTRACT

To prepare for future coronavirus (CoV) pandemics, it is desirable to generate vaccines capable of eliciting neutralizing antibody responses against multiple CoVs. Because of the phylogenetic similarity to humans, rhesus macaques are an animal model of choice for many virus-challenge and vaccine-evaluation studies, including SARS-CoV-2. Here, we show that immunization of macaques with SARS-CoV-2 spike (S) protein generates potent receptor binding domain cross- neutralizing antibody (nAb) responses to both SARS-CoV-2 and SARS-CoV-1, in contrast to human infection or vaccination where responses are typically SARS-CoV-2-specific. Furthermore, the macaque nAbs are equally effective against SARS-CoV-2 variants of concern. Structural studies show that different immunodominant sites are targeted by the two primate species. Human antibodies generally target epitopes strongly overlapping the ACE2 receptor binding site (RBS), whereas the macaque antibodies recognize a relatively conserved region proximal to the RBS that represents another potential pan-SARS-related virus site rarely targeted by human antibodies. B cell repertoire differences between the two primates appear to significantly influence the vaccine response and suggest care in the use of rhesus macaques in evaluation of vaccines to SARS-related viruses intended for human use. ONE SENTENCE SUMMARYBroadly neutralizing antibodies to an unappreciated site of conservation in the RBD in SARS- related viruses can be readily induced in rhesus macaques because of distinct properties of the naive macaque B cell repertoire that suggest prudence in the use of the macaque model in SARS vaccine evaluation and design.


Subject(s)
Coronavirus Infections
9.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.02.438218

ABSTRACT

A COVID-19 vaccine with capability to induce early protection is needed to efficiently eliminate viral spread. Here, we demonstrate the development of a nanoparticle vaccine candidate, REVC-128, in which multiple trimeric spike ectodomain subunits with glycine (G) at position 614 were multimerized onto a nanoparticle. In-vitro characterization of this vaccine confirms its structural and antigenic integrity. In-vivo immunogenicity evaluation in mice indicates that a single dose of this vaccine induces potent serum neutralizing antibody titer at two weeks post immunization, which is significantly higher than titer induced by trimeric spike protein without nanoparticle presentation. The comparison of serum binding to spike subunits between animals immunized by spike with and without nanoparticle presentation indicates that nanoparticle prefers the display of spike RBD (Receptor-Binding Domain) over S2 subunit, likely resulting in a more neutralizing but less cross-reactive antibody response. Moreover, a Syrian golden hamster in-vivo model for SARS-CoV-2 virus challenge was implemented at two weeks post a single dose of REVC-128 immunization. The results show that vaccination protects hamsters against SARS-CoV-2 virus challenge with evidence of steady body weight, suppressed viral loads and alleviation of tissue damage (lung and nares) for protected animals, compared with ~10% weight loss, higher viral loads and tissue damage in unprotected animals. Furthermore, the data show that vaccine REVC-128 is thermostable at up to 37 degree for at least 4 weeks. These findings, along with a long history of safety for protein vaccines, suggest that the REVC-128 is a safe, stable and efficacious single-shot vaccine candidate to induce the earliest protection against SARS-CoV-2 infection.


Subject(s)
COVID-19 , Weight Loss
10.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.01.437942

ABSTRACT

The emergence of SARS-CoV-2 variants that threaten the efficacy of existing vaccines and therapeutic antibodies underscores the urgent need for new antibody-based tools that potently neutralize variants by targeting multiple sites of the spike protein. We isolated 216 monoclonal antibodies targeting SARS-CoV-2 from plasmablasts and memory B cells of COVID-19 patients. The three most potent antibodies targeted distinct regions of the RBD, and all three neutralized the SARS-CoV-2 variants B.1.1.7 and B.1.351. The crystal structure of the most potent antibody, CV503, revealed that it binds to the ridge region of SARS-CoV-2 RBD, competes with the ACE2 receptor, and has limited contact with key variant residues K417, E484 and N501. We designed bispecific antibodies by combining non-overlapping specificities and identified five ultrapotent bispecific antibodies that inhibit authentic SARS-CoV-2 infection at concentrations of <1 ng/mL. Through a novel mode of action three bispecific antibodies cross-linked adjacent spike proteins using dual NTD/RBD specificities. One bispecific antibody was >100-fold more potent than a cocktail of its parent monoclonals in vitro and prevented clinical disease in a hamster model at a 2.5 mg/kg dose. Notably, six of nine bispecific antibodies neutralized B.1.1.7, B.1.351 and the wild-type virus with comparable potency, despite partial or complete loss of activity of at least one parent monoclonal antibody against B.1.351. Furthermore, a bispecific antibody that neutralized B.1.351 protected against SARS-CoV-2 expressing the crucial E484K mutation in the hamster model. Thus, bispecific antibodies represent a promising next-generation countermeasure against SARS-CoV-2 variants of concern.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
11.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.22.308965

ABSTRACT

Pre-existing immune responses to seasonal endemic coronaviruses could have profound consequences for antibody responses to SARS-CoV-2, either induced in natural infection or through vaccination. Such consequences are well established in the influenza and flavivirus fields. A first step to establish whether pre-existing responses can impact SARS-CoV-2 infection is to understand the nature and extent of cross-reactivity in humans to coronaviruses. We compared serum antibody and memory B cell responses to coronavirus spike (S) proteins from pre-pandemic and SARS-CoV-2 convalescent donors using a series of binding and functional assays. We found weak evidence of pre-existing SARS-CoV-2 cross-reactive serum antibodies in pre-pandemic donors. However, we found stronger evidence of pre-existing cross-reactive memory B cells that were activated on SARS-CoV-2 infection. Monoclonal antibodies (mAbs) isolated from the donors showed varying degrees of cross-reactivity with betacoronaviruses, including SARS and endemic coronaviruses. None of the cross-reactive mAbs were neutralizing except for one that targeted the S2 subunit of the S protein. The results suggest that pre-existing immunity to endemic coronaviruses should be considered in evaluating antibody responses to SARS-CoV-2.


Subject(s)
COVID-19
12.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.06.234674

ABSTRACT

Vaccine efforts against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for the current COVID-19 pandemic are focused on SARS-CoV-2 spike glycoprotein, the primary target for neutralizing antibodies. Here, we performed cryo-EM and site-specific glycan analysis of one of the leading subunit vaccine candidates from Novavax based on a full-length spike protein formulated in polysorbate 80 (PS 80) detergent. Our studies reveal a stable prefusion conformation of the spike immunogen with slight differences in the S1 subunit compared to published spike ectodomain structures. Interestingly, we also observed novel interactions between the spike trimers allowing formation of higher order spike complexes. This study confirms the structural integrity of the full-length spike protein immunogen and provides a basis for interpreting immune responses to this multivalent nanoparticle immunogen.


Subject(s)
COVID-19
13.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.02.233536

ABSTRACT

Most antibodies isolated from COVID-19 patients are specific to SARS-CoV-2. COVA1-16 is a relatively rare antibody that also cross-neutralizes SARS-CoV. Here we determined a crystal structure of COVA1-16 Fab with the SARS-CoV-2 RBD, and a negative-stain EM reconstruction with the spike glycoprotein trimer, to elucidate the structural basis of its cross-reactivity. COVA1-16 binds a highly conserved epitope on the SARS-CoV-2 RBD, mainly through a long CDR H3, and competes with ACE2 binding due to steric hindrance rather than epitope overlap. COVA1-16 binds to a flexible up conformation of the RBD on the spike and relies on antibody avidity for neutralization. These findings, along with structural and functional rationale for the epitope conservation, provide a blueprint for development of more universal SARS-like coronavirus vaccines and therapies.


Subject(s)
COVID-19
14.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.07.26.222232

ABSTRACT

IGHV3-53-encoded neutralizing antibodies are commonly elicited during SARS-CoV-2 infection and target the receptor-binding domain (RBD) of the spike (S) protein. Such IGHV3-53 antibodies generally have a short CDR H3 due to structural constraints in binding the RBD (mode A). However, a small subset of IGHV3-53 antibodies to the RBD contain a longer CDR H3. Crystal structures of two IGHV3-53 neutralizing antibodies here demonstrate that a longer CDR H3 can be accommodated in a different binding mode (mode B). These two classes of IGHV3-53 antibodies both target the ACE2 receptor binding site, but with very different angles of approach and molecular interactions. Overall, these findings emphasize the versatility of IGHV3-53 in this common antibody response to SARS-CoV-2, where conserved IGHV3-53 germline-encoded features can be combined with very different CDR H3 lengths and light chains for SARS-CoV-2 RBD recognition and virus neutralization.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
15.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.07.14.201616

ABSTRACT

We show that SARS-CoV-2 spike protein interacts with cell surface heparan sulfate and angiotensin converting enzyme 2 (ACE2) through its Receptor Binding Domain. Docking studies suggest a putative heparin/heparan sulfate-binding site adjacent to the domain that binds to ACE2. In vitro, binding of ACE2 and heparin to spike protein ectodomains occurs independently and a ternary complex can be generated using heparin as a template. Contrary to studies with purified components, spike protein binding to heparan sulfate and ACE2 on cells occurs codependently. Unfractionated heparin, non-anticoagulant heparin, treatment with heparin lyases, and purified lung heparan sulfate potently block spike protein binding and infection by spike protein-pseudotyped virus and SARS-CoV-2 virus. These findings support a model for SARS-CoV-2 infection in which viral attachment and infection involves formation of a complex between heparan sulfate and ACE2. Manipulation of heparan sulfate or inhibition of viral adhesion by exogenous heparin may represent new therapeutic opportunities.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL